
A Task-Agnostic Machine Learning Framework
for Dynamic Knowledge Graphs

Nicholas Sendyk∗
Carleton University Faculty of

Engineering and Design
Ottawa, Ontario, Canada

nicholas.sendyk@disroot.org

Curtis Davies∗
Carleton University Faculty of

Engineering and Design
Ottawa, Ontario, Canada
curtis.davies@riseup.net

Titus Priscu†
Carleton University Faculty of

Engineering and Design
Ottawa, Ontario, Canada

tituspriscu@cmail.carleton.ca

Miles Sutherland†
Carleton University Faculty of

Engineering and Design
Ottawa, Ontario, Canada

milessutherland@cmail.carleton.ca

Atallah Madi†
Carleton University Faculty of

Engineering and Design
Ottawa, Ontario, Canada

atallahmadi@cmail.carleton.ca

Kevin Dick
Carleton University

Ottawa, Ontario, Canada
kevin.dick@carleton.ca

Hoda Khalil
Carleton University

Ottawa, Ontario, Canada
hoda.khalil@carleton.ca

Ala Abu Alkheir
Lytica Inc.

Kanata, Ontario, Canada
ala_abualkheir@lytica.com

Gabriel Wainer
Carleton University

Ottawa, Ontario, Canada
gwainer@sce.carleton.ca

ABSTRACT
Many applications require well-structured and current information
to enable downstream tasks. Knowledge graphs are a type of knowl-
edge representation that effectively organize current information
capturing elements and the relationships between them such that
they can be queried and/or reasoned over in more advanced applica-
tions. A particular challenge is ensuring that an application-specific
knowledge graph is both comprehensive and contains the most
current representation, achieved through dynamic updating. Some
available software frameworks for managing information as part
of a data science pipeline are effective in collecting, labelling, and
analysing textual data using natural language processing. Despite
the utility of these frameworks, they can nonetheless be daunting
for use by industry professionals and/or researchers who may not
be familiar with the specifics of each tool. In this work, we present
a generalized task-agnostic supervised machine learning frame-
work that serves as a streamlined methodology for the creation
and dynamic updating of knowledge graphs. A user needs only
to define task-specific parameters allowing the tool to scrape data
from the internet, generating a candidate corpus. The user may then
provide sample annotations from the corpus to train task-specific
natural language processing models to extract the relevant knowl-
edge graph elements and the relationships connecting them. We
demonstrate the utility of this framework for a case study seeking
to build knowledge graph representations of merger and acquisition

∗Both authors contributed equally to this research.
†These authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honoured.
For all other uses, contact the owner/author(s). CASCON’22, Nov 15-17, 2022, Toronto,
Canada ©2022 Copyright held by the owner/author(s).
CASCON’22, November 15 - 17 2022, Toronto, Canada
.

events between companies from scraped online articles reporting
these instances. Our task-specific machine learning models achieve
upwards of 99.2% F1 score evaluation metric on candidate web page
classification and 81.5% F1 score on sentence-level extraction of
entity relationships, demonstrating the promise of this framework.
Our framework is freely available at: github.com/Checktr/tadkg.

CCS CONCEPTS
•Applied computing→Documentmanagement and text pro-
cessing; Enterprise data management; • Computing method-
ologies → Supervised learning by classification.

KEYWORDS
data science, natural language processing, web scraping, machine
learning, knowledge graph updating
ACM Reference Format:
Nicholas Sendyk, Curtis Davies, Titus Priscu, Miles Sutherland, Atallah
Madi, Kevin Dick, Hoda Khalil, Ala Abu Alkheir, and Gabriel Wainer. 2023.
A Task-Agnostic Machine Learning Framework for Dynamic Knowledge
Graphs. In Proceedings of CASCON 2022 (CASCON’22). ACM, New York, NY,
USA, 10 pages.

1 INTRODUCTION
In this fast-paced digital era where online data is continually evolv-
ing, methods to capture, represent, and analyse those data are
needed to accurately model their underlying phenomena (and
convoluted patterns that could indicate otherwise unknown cor-
relations between objects). A number of large-scale (sometimes
internet-wide) initiatives organize extracted information within a
knowledge graph (KG) structure. KGs, in their most abstracted form,
are comprised of nodes representing specific elements/entities and
are related to one another by edges/connections representing infor-
mation of that relationship [4]. Once constructed, KGs will contain
large amounts of prior knowledge and are an effective means of

https://github.com/Checktr/tadkg


CASCON’22, November 15 - 17 2022, Toronto, Canada N. Sendyk and C. Davies, et al.

organizing data enabling multitudinous downstream applications
such as the creation of recommendation systems, search engines,
and question-answering systems [3].

Examples of large-scale KGs include Google’s Knowledge Graph
[19], WordNet [14], YAGO [20], and Freebase [2]. In 2012, Google
introduced its Knowledge Graph project, which sought to improve
its search engine [19]. WordNet is a lexical database for the English
language where graph nodes represent synsets (sets of cognitive
synonyms comprised of nouns, verbs, adjectives, and adverbs) that
are interlinked by means of conceptual-semantic and lexical rela-
tions enabling downstream applications such as machine transla-
tion, text classification, and text summarization [14]. YAGO is an
open-source KG integrating information extracted from Wikipedia,
WordNet, and GeoNames and attached both a temporal and spatial
dimension to many of its facts and entities [20]. To date, YAGO
contains knowledge of over 17 million entities with over 150 mil-
lion facts about those entities [20]. Finally, FreeBase is a large-scale
collaborative KG comprised of community-submitted information
as well as data harvested from sources including Wikipedia, the
Notable Names Database, the Fashion Model Directory, and Mu-
sicBrainz [2]. Individually and collectively, these KGs represent
massive stores of information on specific elements, as well as on
the relationships that connect them.

While generalized and massive-scale KGs are necessary for a
breadth of downstream applications, the scope of a given KG can be
considerably more focused for specific downstream tasks. Gather-
ing online data for a particular set of elements and certain types of
relationships that relate them is often necessary for more targeted
tasks. Examples include matching a set of faculty members names
to their home university, determining whether certain venture cap-
italists (VC) have invested in various companies, or determining
whether a given company has undergone a merger or acquisition
with another. In each instance, online information must be gath-
ered from numerous differently-structured web pages and using
adapted natural language processing (NLP) techniques, the relation-
ships between those identified entities must be accurately extracted
for integration into a dedicated KG. Essentially, extracting these
specific relationships - through the use of Google Search, for ex-
ample - may be roughly analogous to taking a particular slice from
Google’s own Knowledge Graph, however, those desired entities
and/or relationships may not always be contained within a more
generalized KG requiring specific frameworks to construct one’s
own. Moreover, as the underlying relationships evolve over time,
the KG must also evolve to reflect those changes.

Whether generalized and massive-scale or task-specific and of
modest-scale, critical to the utility of KGs is the recency (the “fresh-
ness") of their contained information. Consequently, once a KG
is created, it also must usually be maintained through dynamic
updating. For example, the Never-Ending Language Learning sys-
tem (NELL) developed at Carnegie Mellon University is a semantic
machine learning (ML) system that runs continuously (i.e. 24/7 and
forever) in its task of learning to read and generate new facts from
the web [15]. While certain information may be updated with rela-
tively high frequency necessitating continual KG modelling, other
processes (e.g. achieving university tenure, VC investment, com-
panymergers & acquisitions) evolve at relatively slower frequencies
implying that KG updates (including careful deduplication) need

only occur at spaced intervals (e.g. once a month) to ensure recency
in the resultant KG.

The task-specific generation and dynamic updating of KGs re-
quires the coordination of a large diversity of software tools as
part of an integrated framework. Also incorporated within these
framework state-of-the-art NLP models that, through fine-tuning
and/or transfer learning, are tailored to particular tasks. For exam-
ple, the PubMed Knowledge Graph was created using a framework
specifically tailored for leveraging Bidirectional Encoder Represen-
tations from Transformers for Biomedical Text Mining (BioBERT)
[10] in order to extract bio-related entities from over 29 million
PubMed abstracts [21]. Similarly, Amazon has sought to build a
Product Knowledge Graph by harvesting product knowledge from
semi-structured sources on the web and from text product profiles
through the use of a complex series of deep learning models and
methodologies [6].

Research groups, companies, and various organizations that
might benefit from the generation of their own task-specific KG
are unlikely to have the resources and expertise to develop the nec-
essary software framework [11]. Given that many of the common
procedures in generating and dynamically updating a KG can be
abstracted into a few simple steps (summarized in Fig. 1), it would
be of immense benefit to research groups, companies, and various
organizations alike to make use of a task-agnostic framework that,
through simple user parameterization, could be tailored to a specific
task.

To that end, we introduce within this work, the first open-source,
task-agnostic machine learning framework for dynamic KG genera-
tion and updating. Such a general framework can be easily adapted
and reused to solve a variety of problems. The framework enables
users to quickly develop systems that accurately extract online
information, enabling the generation and dynamic updating of
task-specific KG from the evolving web. We collaborate with an
industry partner, Lytica Inc., to demonstrate the utility of the pro-
posed framework. We apply the framework to a case study by
creating and dynamically updating a KG of electronic component
manufacturer merger and acquisition events.

2 FRAMEWORK DEVELOPMENT, DATA
COLLECTION, & METHODOLOGY

When developing a dynamically-updated KG for a particular task,
one of the greatest challenges is identifying the relevant online
information with which to generate and update the KG. Projects
focused on a niche topic are typically updated from online sources
in a variety of unstructured forms. These data are not amenable
to simple extraction, given that they may be embedded as text-
based content interspersed among a variety of digital (meta)data.
Examples of task-specific target sources may include news articles,
press releases, blogs, and other forms of digital media. Gathering
such information is a difficult task. Designing a solution that is
specific for each task may be efficient, in some cases, but is time-
consuming and redundant. An elegant task-agnostic solution can
address these challenges while guaranteeing efficiency, re-usability,
and higher quality through more testing opportunities.

The framework we present here facilitates rapid and accurate
generation of dynamic KGs and functions such that it may update



A Task-Agnostic Machine Learning Framework
for Dynamic Knowledge Graphs CASCON'22, November 15 - 17 2022, Toronto, Canada

Figure 1: Conceptual Framework Overview applying the Machine Learning Framework to an Abstracted Task.

a given KG in near-real-time. The framework facilitates all aspects
of task-speci�c data collection, data analysis, data enrichment, and
NLP model generation, which together allow for the generation and
deployment of highly scalable KG enabling various downstream
applications.

2.1 Framework Overview
The framework we present abstracts the common steps in KG gen-
eration and updating into the four general components illustrated
in Fig. 1. A given user can parameterize/modify each framework
component to suit their speci�c application; the functions of each
component are described below.

2.1.1 Web Scraping.The �rst component in our framework is a
user-con�gurable web scraper that leverages the Google Search
API. A generalized web search and scraping framework enables
the handling of the diversity and unstructured formatting of poten-
tial search results. Users de�ne an input set of candidate entities
along with particular search terms to use in conjunction with those
entities to narrow the web scraper to candidate web pages. While
the Google Search API is an accessible way to gather web pages
from a set of keywords, it may present a challenge with its �nancial
cost. The framework attempts to mitigate this issue by separating
the web-search and web-scraping components of the process to
allow users to pass web page URLs through other methods, such as
another search engine or a predetermined list of URLs from a �le.

When a given web page is added to the scraping queue, it is �rst
examined to ensure it is formatted as a HyperText Markup Language
(HTML) �le. Web searches can yield non-HTML results such as
PDF �les which search engines deem relevant to the searched topic.
Non-HTML pages are determined by checking theContent-Type
header in the web server's response and subsequently ignored
within our framework. While non-HTML �les may contain relevant
information, many of them contain data that is encoded in a binary
format, making text extraction a much more di�cult process (e.g.
require the application of Optical Character Recognition software).

Once the page format is veri�ed, the HTML-encoded data is
passed into the text extraction process to be scrubbed for informa-
tion. The framework uses the Beautiful Soup [18] Python library to
pull text from the encoded data to store it. If the framework con�g-
ured to store the data as separate sentences, a regular expression
is applied to detect sentence and paragraph splits within the text.
Each piece of data, whether a full page (denotedpage-leveldata) or
a sentence (denotedsentence-leveldata), is stored in the appropriate
training database.

Structured data within the framework is stored within SQLite
[9] databases that are manipulated by di�erent segments of the
code. Using SQLite allows for easy sharing and backing up of data
within the databases for data replication and collaboration during
development and use.

The training database contains columns containing information
that is relevant to the training of the downstream NLP models and
for subsequent data analysis. These columns include headers for
the URL of the web page from where the extracted text originates,
the entity being examined and searched for to retrieve the page,
the text itself and any user-de�ned parameters on which the NLP
model is to be trained upon. Our framework support the manual
annotation of these data to produce task-speci�c NLP models as
part of the training and prediction phases, described next.

2.1.2 NLP Models - Page Predictor & Sentence Predictor.The frame-
work uses multiple NLP models to handle unstructured textual data
and to extract and/or classify particular textual elements. In order
to generate task-speci�c classi�cation models, our framework in
its generic con�guration uses a combination of Google's BERT [5]
transformer model and HuggingFace's Longformer [1] model to
classify text segments of varying lengths.

Users are provided with terminal-based annotation tools capable
of providing users with textual examples to be classi�ed accord-
ing based on their relevancy to the particular task. By preparing
training examples (usually about a few hundred), the NLP models
can be adapted to identifying candidate web pages and textual data
relevant to the user's intended task.



CASCON'22, November 15 - 17 2022, Toronto, Canada N. Sendyk and C. Davies, et al.

Applying transfer learning to these pre-trained models allows
for context-aware analysis of arbitrary articles and sentences from
the internet without needing to prepare the models from scratch for
any speci�c topic. The framework, for data augmentation purposes,
additionally leverages Huggingface's PEGASUS [22] model to gen-
erate synthetic data similar to sentences within the extracted data-
base. When applied to individual sentences, the PEGASUS model
can create new sentences of similar lengths and similar meanings
using synonym words and di�erent sentence structures sharing the
same semantic meaning. Conveniently, PEGASUS is also leveraged
to summarize the scraped articles into shorter documents while
maintaining their semantic meaning.

In summary, the resultant page-level classi�cation NLP model is
capable of predicting whether a given candidate page is relevant
(see Fig. 1B & C) and, subsequently, the sentence-level segmentation
model NLP model identi�es the candidate sentences within a given
HTML page as relevant to the extraction task.

2.1.3 JSON Output & Visualization Interface.Finally, to provide
an interactive interface to make transparent to the user all stages
of the data extraction pipeline, a visual interface (and machine-
friendly API) is available to the user to oversee the complete KG
generation and updating process. The interface functions in near-
real-time, enabling a user to enter new entities and trigger the
pipeline to extract relevant, online, and task-speci�c information.
The underlying API generates JSON objects that can easily interface
with graph-generating software such as Cytoscape or Gephi (not
included within this framework).

2.2 Task-Speci�c NLP Model Training Pipeline
In order to build the initial task-speci�c model(s) used to make
predictions, the framework needs to apply transfer learning to a
pre-trained NLP model using an initial dataset. The framework uses
a supervised learning approach, requiring a set of sample inputs
and expected outputs for the model to process and determine how
to analyse future data to make predictions. This section of the work
shall be referred to as theTraining Pipeline. A detailed overview of
this pipeline is illustrated in Figure 2.

2.2.1 Corpus Acquisition.To obtain an initial set of textual data
to train the ML model(s), the framework performs web searches
created from user-speci�ed templates and keywords. Candidate
search results are logged and their source-code is scraped to extract
textual information before being added to the training database.

Within the framework's con�guration �le, the user speci�es a
list of entities to be searched for along with templates to insert
these entities into. An example of this would be the entitiesUSA,
GermanyandSweden, with a template of �Tourism in {} 2022 �.
Given these parameters, the framework replaces every token{}
with an entity from the list. The usage of query templates over raw
query strings allows for a much broader set of articles to be pulled
with minimal con�guration by the user.

With the list of search queries generated, the framework uses
Google [16] to pull relevant web pages and articles. The user is
able to adjust parameters passed to the Google Search library that
may yield more optimal results, such as the region to search for or
the number of results to pull per query. Through several rounds

of experimentation, we determined that the default number of
unique web pages returned per query would be set to: = 25.
This decision balances both the coverage of candidate pages of
putative relevancy with the risk of acquiring an excessive number
of potentially irrelevant pages, which exacerbates class imbalance
(true relevant web pages are generally assumed to be rare) and
represents noise in our subsequently trained model.

In reference to Figure 2, this can be seen as the top portion of
the model taking input arguments and then using linkgrabber.py
to collect a list of relevant web pages. These web pages are then
converted to text using thedrycleaner.py. Now that the text is ob-
tained, they can be cleaned of unwanted text and put into the page
text table so that only the raw data for each search is used for the
rest of the training data.

2.2.2 Data Labelling.In formulating the web page prediction task
using a supervised learning, users must provide labels to a su�-
ciently large subset of the initially extracted candidate textual data
to �ne tune a pre-trained NLP model in order for it to then make
predictions based on future inputs. The framework provides an
interactive tool that allows the user to label rows of data within
tables, representing either entire articles (page-level annotation) or
sentences (sentence-level annotation), based on parameters speci-
�ed within the con�guration �le. Due to the nature of this labelling
process, the concept of truth is dependent on the results of the
labelling process by the user and takes no other externally sourced
input into consideration.

A common problem with labelling within data science is the
potential annotator bias introduced within the labelling process.
For example, if articles and sentences are added into the database
sequentially, a user labelling data in the same order of incorporation,
bias may be unintentionally introduced into the training data set
due to unbalanced proportions of labelled rows between entities. In
order to minimize this e�ect, the labelling tool selects random rows
from the database for the user to label, preventing unconscious bias
stemming from the order of records within the data set. On average,
the proportion of labelled data will approximate the proportion of
representation a given entity has within the complete data set. For
many applications, such an approach should be su�cient, however
users applying this framework to applications exhibiting extreme
class imbalance (long-tailed distributions) are encouraged to adapt
the labelling strategies through appropriate means (e.g.strati�ed
sampling, over-/under-sampling).

Looking at Figure 2 it can be seen that in the middle and bottom
lines there are 2 labeling sections. The middle row labels at a page
level to tell the model whether the pages taken from the page text
table database contains information of use. The pages that are found
to be useful, labeled with "1", are then copied over and split into
sentences into the sentence text table database. Now the bottom
row of the model labels from the new database created to �nd which
sentences speci�cally contain useful information to the user.

2.2.3 Synthetic Data.In some cases, data pulled from web searches
does not contain enough positive data to create a model that will
yield accurate results pertaining to the user's intended topic. With-
out su�cient data to be �agged as positive, the model will incor-
rectly label many results as negative and yield poor accuracy. Our



A Task-Agnostic Machine Learning Framework
for Dynamic Knowledge Graphs CASCON'22, November 15 - 17 2022, Toronto, Canada

Figure 2: Detailed Overview of the Framework's Training Pipeline. Data is acquired using input arguments given by the user.
The data is then manually labeled and models are trained to use in the prediction pipeline.

framework provides a complimentary function to generate syn-
thetic textual data with speci�c output values speci�ed by the user.
This allows the model to more accurately identify patterns to be la-
belled as positive, even when genuine data pulled from web searches
provides minimal information on these sentences.

In a similar format to creating search query templates, the user
can organize �fake entities" and templates making sentences similar
to what the framework would �nd when scanning articles repre-
senting speci�c kinds of information. The results generated from
each template are spun using the PEGASUS [22] summarization
model. This allows for further iterations of each synthetic data
point, leading to a broader, less biased set of sentences upon which
to train our task-speci�c model(s). This synthetic data is used along-
side genuine labelled data to build a more accurate model to detect
the requisite KG relationships.

During the initial development of our case study, our experi-
ments demonstrated that the inclusion of synthetic data to the
existing training data set increased model F1 scores by up to 12%,
considerably improving model accuracy. In order to preserve trans-
parency, the synthetic data is marked as such within the database
and may easily be �ltered out in subsequent applications.

Once the data is labeled and put back into both the page text
and sentence text table databases, synthetic data is also added
to the sentence-level table. This process can be seen in Figure 2,

where labelled data and synthetic positive data are combined pre-
strati�cation and used to train the model on the third row of the
diagram.

2.2.4 Model Training.Once the data set has been curated and an-
notated (with and/or without the inclusion of synthetic data), the
NLP model(s) are trained. The �rst stage of the training pipeline
process is data strati�cation. Depending upon the bias of the col-
lected data, or the number of classes within it, training an NLP
model can become confounded by those biases, resulting in poor
results. One solution to circumvent this is to re�ne the training
data to a high-quality strati�ed subset of samples with which to
train the model. This approach risks removing a portion of the data
depending on the strati�cation method chosen, but the end result
generally produces a much more re�ned model.

Using the strati�ed data, the framework leverages transfer learn-
ing of HuggingFace models through supervised learning to train
models. The speci�c models chosen to be trained are context-
dependent on the use case, as many problems have a variety of
needs and classi�cations associated with those needs. The speci�c
models leveraged in our task-speci�c case study are discussed be-
low. The trained models are then used to make predictions in the
Prediction Pipeline.

The Final step in the model in Figure 2 is the training of the
models. The page level training in the middle of the �gure takes
the database containing the labeled data and takes it to be strati�ed.



CASCON'22, November 15 - 17 2022, Toronto, Canada N. Sendyk and C. Davies, et al.

Figure 3: Detailed Overview of the Framework's Prediction Pipeline. pipeline gathers data with reference to user input arguments
make prediction and output results. The data acquired is pushed through the multiple models made with the already manually
labeled data. The pipeline than creates a visualization of the data for the user to use and analyze the results.

the data then goes through the Longformers NLP training and the
model is output. for the sentence level the process in very similar.
The labeled sentance level data is strati�ed and trained to create
the output model.

2.3 Task-Speci�c NLP Prediction Pipeline
Once the Training Pipeline has completed, the necessary resources
are organized for the general deployment as part of thePrediction
Pipeline. The framework uses the NLP classi�ers trained in the
initial pipeline and formats these models according to the user-
con�gured requirements for speci�c KG generation or update. This
con�gured script is used to make predictions on newly extracted
data and ultimately be integrated into the resultant knowledge
graph for downstream applications and/or data analysis. A detailed
view of the make-up of this pipeline is shown in Figure 3.

2.3.1 Data Gathering.Gathering raw information for prediction is
done in a manner akin to the Corpus Acquisition found in section
2.2.1. Textual data is gathered via the framework through web
searches according to user-speci�ed templates and keywords. The
resultant data are then logged, web pages scraped, and the textual
data is extracted and stored. The framework can be con�gured to
specify the queryable entities through multiple schemes; users can
optionally provide a supplied list of entities or interact with the
interface dynamically by providing a single entity at a time. There
is no inherent cap on the length of the list of entities.

The results gathered from each search are collected into a Panda's
Data Frame. These results are then sanitized and formatted so to
be consistent with the training data. This Data Frame containing
sanitized results is then passed through the pipeline for prediction
by each of the �ne-tuned models.

In �gure 3, the acquisitions of links is similar to that in Figure 2.
The pipeline takes input arguments and using linkgrabber.py and
thedrycleaner.py acquires the text from the relevant web pages.

2.3.2 Multi-Model Predictions.Making predictions on even a mod-
est subset of online sources is a computationally demanding task.
Employing a �divide-and-conquer"-like approach is necessary to
avoid wasteful application of compute resources on irrelevant data.

The default framework considers two general levels of data as
part of the Prediction Pipeline, the page-level representation for
candidate web pages and the sentence-level representation for can-
didate entities and relationships. Our framework is con�gurable to
allow for additional levels and types of abstractions, in its gener-
alized/default form, the two page-/sentence-levels of abstraction
should be su�cient for the majority of tasks.

The page-level of abstraction represents a sanitized candidate
web page to the page-level NLP for classi�cation. If rejected as
irrelevant, we spare considerable computational expense to fur-
ther consider the sentences contained within. Using this approach,
our framework has demonstrated great success implementing the
Longformers [1] pre-trained model for our case study application
(described below).

If a candidate web page is instead classi�ed as relevant, the
sentence-level model is applied to the contents of that page, split
by the framework into sentences and each classi�ed for relevancy.
Should the sentence be classi�ed as containing relevant information
to the KG, it is classi�ed as a positive. The sentence-level models
can be implemented as a binary classi�er, named entity recognition
model, or any number and mix of other NLP model which is relevant
to the user-de�ned project.

Once the data is acquired, the data goes through the page level
and sentence level models created in the training pipeline. Following
Figure 3, with the page text from the website links it is then put



A Task-Agnostic Machine Learning Framework
for Dynamic Knowledge Graphs CASCON'22, November 15 - 17 2022, Toronto, Canada

through the realworlddetection.py page level model. through the
model if the link shows relevant data the page is marked with a "1"
and if not it is marked with a "0". Links with "1", continue to the
sentence level model and links with a "0" are disposed as they do
not provide relevant information. The process then happens again
with sentence level model for the data that passed through the page
level model.

2.3.3 Output.The Prediction Pipeline results are stored in an
SQLite database, separate from the training data. This database
contains results from the pipelines along with metadata on the
process itself, including timestamps and con�dence scores.

This data is made readily accessible through an interactive web-
based dashboard, listing entities and the web pages associated with
the results detected by the framework (Fig. 1E). An example of this
dashboard for the predictions speci�c to our case study is shown
in Fig. 8. Results are also made accessible through an HTTP REST
API, formatted as JSON semi-structured data. The API allows for
speci�c queries to be performed on the data set, such as searching
for speci�c entities and searching the web for results based on new
entities in near-real-time (about seconds to minutes). Due to the
nature of the model's ability to recognize entities based on patterns
found within sentence structures, a model trained on well-labelled
data will be able to e�ciently learn new facts about previously
unknown entities at runtime. This API-based method of querying
data leads to minimal load on a client fetching data from the data set,
allowing for lightweight, remote access to results from the models
on any custom client organized by a user. Ultimately, the visualized
results and/or JSON data can be easily integrated into an existing KG
and visualized using conventional network visualization software.

After going through both models the data is then pushed through
the Machine Learning Data State Machine where the results for each
page are processed and then stored in the Prediction database. Now
at the bottom of Figure 3 it is seen that the data lastly goes through
visualize.py and the API to output the User interface containing
the results of the prediction pipeline.

3 CASE STUDY - MERGER & ACQUISITION
EVENTS

A case study for the utility of this framework was performed in
collaboration with Lytica Inc. [12]. Lytica Inc. provides risk man-
agement services to companies looking to purchase electronic com-
ponents, collecting data on the electronic component manufacturer
supply chains and providing relevant information allowing compa-
nies to make informed purchasing decisions.

To maintain a KG of existing electronic component manufac-
turers (and the relationships between them), Lytica Inc. sought
to deploy a system to intermittently detect mergers and acquisi-
tions between these electronics manufacturers companies. While
databases of similar information exist as paid services from other
companies [13], Lytica Inc. sought to integrate their own con�g-
urable KG generation and updating service that may potentially
detect mergers and acquisitions not captured by competing services.
The requested solution would search the internet for merger and/or
acquisition events pertaining to a list of predetermined companies.
Lytica Inc. provided a list of 200 example company names to test

the system against and which represented the initial set of entities
to query.

The system was con�gured to generate results indicating whether
a company was involved in amergeror acquisition or merger
acquisition . The web scraping component was set up to generate
queries searching for mergers and acquisitions related to a portion
of the companies listed. Synthetic data with falsi�ed or unrelated
company names were also generated to avoid bias towards speci�c
subsets of the electronic manufacturers provided. Data was col-
lected and generated at both the page- and sentence-level to allow
for extensive training of each model.

With the data prepared, the system was con�gured to train
four separate classi�ers with PyTorch [17] and Longformer [1]
models pertaining to the presence of mergers and acquisitions with
each company. A single classi�er,PageLevelClassi�er, determined
whether a web page contained information relevant to a merger
or acquisition. If this model deemed a page relevant, it was split
into sentences and passed to theMergerOrAcquisitionClassi�er. This
classi�er served as a general purpose sentence-level classi�er to
determine if a particular sentence had any relevant information for a
merger or acquisition. A sentence passing this classi�er was passed
to the MergerClassi�erand theAcquisitionClassi�erto determine
the likelihood of whether the relevant sentence contained a merger,
acquisition or both.

Each model's training session provided a confusion matrix con-
taining metrics derived from the rate of True Positive (TP), True
Negative (TN), False Positive (FP, Type 1 Error) and False Negative
(FN, Type 2 Error) hits when testing the model against speci�ed
testing rows within the training database.

�22DA02~=
)%¸ ) #

)%¸ ) # ¸ �%¸ �#
(1)

(4=B8C8E8C~=
)%

)%¸ �#
(2)

(?4285 828C~=
) #

) # ¸ �%
(3)

%A428B8>==
)%

)%¸ �%
(4)

�0;B4#460C8E4'0C4= 1 � (4=B8C8E8C~ (5)

�0;B4%>B8C8E4'0C4= 1 � (?4285 828C~ (6)
A Type I Error occurs when the model predicts that an acquisi-

tion/merge did happen, when it did not. Conversely, a Type II Error
occurs when the model predicts that an acquisition/merge did not
happen, when in actuality it did. These metrics are used to compute
various indicators that can be individually and/or collectively con-
sidered to evaluate model performance and reliability. The results
extracted from the confusion matrix of each of the classi�ers are
tabulated in table 1.

4 RESULTS AND DISCUSSION
In order to lower the barrier of entry to KG generation and updating
for individuals, the research community, companies, and various
organizations, an open-source and user-customizable framework is
required. While the space of potential highly-specialized use-cases



CASCON’22, November 15 - 17 2022, Toronto, Canada N. Sendyk and C. Davies, et al.

Table 1: Results of Classifiers

Classifier Merger Acquisition Merger or Acquisition Page level
Accuracy 0.98 0.98 0.98 0.81
Precision 0.99 0.98 0.99 0.86
Sensitivity 0.985 0.98 0.9960 0.7701
Specificity 0.9818 0.98 0.9408 0.86

False Negative Rate 0.0195 0.0095 0.0040 0.2299
False Positive Rate 0.0182 0.0396 0.0592 0.14

F1 score 0.9877 0.9896 0.9920 0.8146

for such a framework cannot conceivably be covered by a single,
task-agnostic framework, we consider that numerous applications
could be simplified to resemble the formulation of our use case.
Thus, integrated within our framework defaults are many of the
experimental values deemed best suited to a general KG generation
application.

4.1 Case Study Results
As part of the mergers and acquisition event detection case study
for the framework presented within this work, we note that highly
accurate NLP models were created and the resultant KG reflects
well the underlying merger and acquisition events in the electronic
component manufacturer space. In this work, over 400+ web pages
and 1,500+ sentences were manually labelled. This provides a gen-
eral sense for the magnitude of annotation effort required to achieve
a comparable level of performance. As is common with machine
learning systems, it is our expectation that the greater the number
of consistent and high-quality annotations produced, the greater
the subsequent models will perform in their targeted task.

The Merger classifier results can be seen in table 1 and can be
seen to have produced very accurate results with an F1 score of
0.9877. The classifier had very low false negative and false positive
rates, indicating that the merger classifier is very efficient at finding
mergers within the text of the sentences.

Relative to the Merger classifier, the false negative rate is lower
for the Acquisition classifier, mainly in part because the data that
was labelled had more instances where companies would outright
acquire other companies rather thanmerge with them. As a result of
this domain-specific knowledge, it is expected that the false negative
rate be lower in the Acquisitions’ classifier compared to the Merger
classifier, since the semantically similar terms for “merger" would
not be captured in the resultant candidate web pages and sentences.

The web page classifier did not produce as strong results relative
to the Merger and Acquisition classifiers due to two main reasons.
The first reason is that fewer web pages were labelled at the same
time compared to the sentence level. There were approximately
400+web pages manually labelled, compared to the 1,500+manually
labelled sentences. The second reason is that the web page’s text
sometimes contains over 10,000 words. The classifier originally
used was BERT [5] which could only analyse 512 words. Then, we
implemented the Longformer [1] classifier, which could analyse
4,096 words at optimum computations. However, on average the
limitations set by the computers used allowed for 3,072 words only
to be analysed. Even with the increase in word input from BERT
[5] to Longformer [1] methods, this caused the page level classifier

to have higher false positive and negative rates. This challenge
could be mitigated by explicitly splitting candidate web pages into
“batches" sufficiently sized for page-level processing, in order to
explicitly conserve all textual information.

The last sentence-level classifier that was trained was the Merger
or Acquisitions classifier. Naturally, since this classifier looks
for both cases of merged or acquired, it would be expected that the
false negative rate would be lower. Which was observed, the false
negative rate was 0.0040 which is less than 0.0195 (Merger) and
0.0095 (Acquisitions). Conversely, the false positive rate would be
higher since the classifier is detecting both cases at 0.0592 which
is higher than 0.0182 (Merger) and 0.0395 (Acquisitions). It is im-
portant that this classifier has the lowest false negative rate and
highest false positive rate to act as a second filter process for the
text from each web page. By applying the MergerOrAcquisition
classifier before both Merger or Acquisition classifiers results in
the most accurate and precise decisions for the final output that the
user would see. Additionally, the MergerOrAcquisition F1 score
was the greatest at 0.9920 while the web page-level F1 score was
0.8146.

4.2 Visualizing the Knowledge Graph Results
Following the use of the framework, a rich, dynamically-built
dataset was produced representing a KG of merger and acquisition
events between electronic component manufacturers. This data
set enables downstream applications through querying. To more
explicitly visualize some of the resulting relationships, network
plotting libraries were used.

Figure 4 visualizes a graph to show, for a subset of the data col-
lected, every relationship between entities in the resulting data set.
Through the use of network-based metrics, additional relationships
and insights may be derived (e.g. are there nodes with abnormally
high in-degree representing a conglomerate of other manufactur-
ers?). As shown in Fig. 5 multiple criteria can be used to filter and
gather all known relationships relating to mergers and acquisitions.
This visualization (albeit not interactive in this form) is highly valu-
able for exploring the information and the connections between
entities and their surrounding mergers and acquisitions.

Figures 6 and 7 show more actionable insights. For the given
subset of data, these graphs demonstrate specific actionable search
criteria. Using such language filters (i.e. in this situation the filters of
"acquired by" and "acquires") specific relationships can be extracted
from the resulting data set produced from our framework. These
types of insights can be used to update existing KG, or to be used
as the basis for further data exploration.



https://github.com/Checktr/tadkg

	Abstract
	1 Introduction
	2 Framework Development, Data Collection, & Methodology
	2.1 Framework Overview
	2.2 Task-Specific NLP Model Training Pipeline
	2.3 Task-Specific NLP Prediction Pipeline

	3 Case Study - Merger & Acquisition Events
	4 Results and Discussion
	4.1 Case Study Results
	4.2 Visualizing the Knowledge Graph Results
	4.3 Training Data Enrichment is a Major Challenge to Knowledge Graph Generation
	4.4 Further Expansion of Framework

	5 Conclusion
	References

